Войти
Спортивный клуб - Skrodina
  • Трек к базовому лагерю Эвереста
  • Анастасия загоруйко Загоруйко анастасия биатлон
  • Оле Эйнар Бьорндален: "Нас с Дарьей ждет новая жизнь"
  • Дениз Остин «Тренировочный лагерь» — видео, результаты, отзывы
  • Как пройти этапы «Reebok
  • Открытый чемпионат Австралии (Australian Open) Открытый чемпионат австралии по теннису
  • Строение свойства и функции гладких мышц. Свойства гладких мышц

    Строение свойства и функции гладких мышц. Свойства гладких мышц

    По морфологическим признакам выделяют три группы мышц:

    1) поперечно-полосатые мышцы (скелетные мышцы);

    2) гладкие мышцы;

    3) сердечную мышцу (или миокард).

    Функции поперечно-полосатых мышц:

    1) двигательная (динамическая и статическая);

    2) обеспечения дыхания;

    3) мимическая;

    4) рецепторная;

    5) депонирующая;

    6) терморегуляторная.

    Функции гладких мышц:

    1) поддержание давления в полых органах;

    2) регуляция давления в кровеносных сосудах;

    3) опорожнение полых органов и продвижение их содержимого.

    Функция сердечной мышцы – насосная, обеспечение движения крови по сосудам.

    1) возбудимость (ниже, чем в нервном волокне, что объясняется низкой величиной мембранного потенциала);

    2) низкая проводимость, порядка 10–13 м/с;

    3) рефрактерность (занимает по времени больший отрезок, чем у нервного волокна);

    4) лабильность;

    5) сократимость (способность укорачиваться или развивать напряжение).

    Различают два вида сокращения:

    а) изотоническое сокращение (изменяется длина, тонус не меняется);

    б) изометрическое сокращение (изменяется тонус без изменения длины волокна). Различают одиночные и титанические сокращения. Одиночные сокращения возникают при действии одиночного раздражения, а титанические возникают в ответ на серию нервных импульсов;

    6) эластичность (способность развивать напряжение при растягивании).

    Физиологические особенности гладких мышц.

    Гладкие мышцы имеют те же физиологические свойства, что и скелетные мышцы, но имеют и свои особенности:

    1) нестабильный мембранный потенциал, который поддерживает мышцы в состоянии постоянного частичного сокращения – тонуса;

    2) самопроизвольную автоматическую активность;

    3) сокращение в ответ на растяжение;

    4) пластичность (уменьшение растяжения при увеличении растяжения);

    5) высокую чувствительность к химическим веществам.

    Физиологической особенностью сердечной мышцы является ее автоматизм . Возбуждение возникает периодически под влиянием процессов, протекающих в самой мышце. Способностью к автоматизму обладают определенные атипические мышечные участки миокарда, бедные миофибриллами и богатые саркоплазмой.

    2. Механизмы мышечного сокращения

    Электрохимический этап мышечного сокращения.

    1. Генерация потенциала действия. Передача возбуждения на мышечное волокно происходит с помощью ацетилхолина. Взаимодействие ацетилхолина (АХ) с холинорецепторами приводит к их активации и появлению потенциала действия, что является первым этапом мышечного сокращения.

    2. Распространение потенциала действия. Потенциал действия распространяется внутрь мышечного волокна по поперечной системе трубочек, которая является связывающим звеном между поверхностной мембраной и сократительным аппаратом мышечного волокна.

    3. Электрическая стимуляция места контакта приводит к активации фермента и образованию инозилтрифосфата, который активирует кальциевые каналы мембран, что приводит к выходу ионов Ca и повышению их внутриклеточной концентрации.

    Хемомеханический этап мышечного сокращения.

    Теория хемомеханического этапа мышечного сокращения была разработана О. Хаксли в 1954 г. и дополнена в 1963 г. М. Девисом. Основные положения этой теории:

    1) ионы Ca запускают механизм мышечного сокращения;

    2) за счет ионов Ca происходит скольжение тонких актиновых нитей по отношению к миозиновым.

    В покое, когда ионов Ca мало, скольжения не происходит, потому что этому препятствуют молекулы тропонина и отрицательно заряды АТФ, АТФ-азы и АДФ. Повышенная концентрация ионов Ca происходит за счет поступления его из межфибриллярного пространства. При этом происходит ряд реакций с участием ионов Ca:

    1) Ca2+ реагирует с трипонином;

    2) Ca2+ активирует АТФ-азу;

    3) Ca2+ снимает заряды с АДФ, АТФ, АТФ-азы.

    Взаимодействие ионов Ca с тропонином приводит к изменению расположения последнего на актиновой нити, открываются активные центры тонкой протофибриллы. За счет них формируются поперечные мостики между актином и миозином, которые перемещают актиновую нить в промежутки между миозиновой нитью. При перемещении актиновой нити относительно миозиновой происходит сокращение мышечной ткани.

    Итак, главную роль в механизме мышечного сокращения играют белок тропонин, который закрывает активные центры тонкой протофибриллы и ионы Ca.

    Физиология скелетных и гладких мышц

    Лекция 5

    У позвоночных и человека три вида мышц : поперечнополосатые мышцы скелета, поперечнополосатая мышца сердца – миокард и гладкие мышцы, образуюцие стенки полых внутренних органов и сосудов.

    Анатомической и функциональной единицей скелетных мышц является нейромоторная единица - двигательный нейрон и иннервируемая им группа мышечных волокон. Импульсы, посылаемые мотонейроном, приводят в действие все образующие ее мышечные волокна.

    Скелетные мышцы состоят из большого количества мышечных волокон. Волокно поперечнополосатой мышцы имеет вытянутую форму, диаметр его от 10 до 100 мкм, длина волокна от нескольких сантиметров до 10-12 см. Мышечная клетка окружена тонкой мембраной – сарколеммой , содержит саркоплазму (протоплазму) и многочисленные ядра . Сократительной частью мышечного волокна являются длинные мышечные нити – миофибриллы , состоящие в основном из актина, проходящие внутри волокна от одного конца до другого, имеющие поперечную исчерченность. Миозин в гладких мышечных клетках находится в дисперсном состоянии, но содержит много белка, играющего важную роль в поддержании длительного тонического сокращения.

    В период относительного покоя скелетные мышцы полностью не расслабляются и сохраняют умеренную степень напряжения, т.е. мышечный тонус .

    Основные функции мышечной ткани:

    1)двигательная – обеспечение движения

    2)статическая – обеспечение фиксации, в том числе и в определенной позе

    3)рецепторная – в мышцах имеются рецепторы, позволяющие воспринимать собственные движения

    4)депонирующая – в мышцах запасаются вода и некоторые питательные вещества.

    Физиологические свойства скелетных мышц:

    Возбудимость . Ниже, чем возбудимость нервной ткани. Возбуждение распространяется вдоль мышечного волокна.

    Проводимость . Меньше проводимости нервной ткани.

    Рефрактерный период мышечной ткани более продолжителен, чем нервной ткани.

    Лабильность мышечной ткани значительно ниже, чем нервной.

    Сократимость – способность мышечного волокна изменять свою длину и степень напряжения в ответ на раздражение пороговой силы.

    При изотоническом сокращении изменяется длина мышечного волокна без изменения тонуса. При изометрическом сокращении возрастает напряжение мышечного волокна без изменения его длины.

    В зависимости от условий стимуляции и функционального состояния мышцы может возникнуть одиночное, слитное (тетаническое) сокращение или контрактура мышцы.

    Одиночное мышечное сокращение. При раздражении мышцы одиночным импульсом тока возникает одиночное мышечное сокращение.

    Амплитуда одиночного сокращения мышцы зависит от количества сократившихся в этот момент миофибрилл. Возбудимость отдельных групп волокон различна, поэтому пороговая сила тока вызывает сокращение лишь наиболее возбудимых мышечных волокон. Амплитуда такого сокращения минимальна. При увеличении силы раздражающего тока в процесс возбуждения вовлекаются и менее возбудимые группы мышечных волокон; амплитуда сокращений суммируется и растет до тех пор, пока в мышце не останется волокон, не охваченных процессом возбуждения. В этом случае регистрируется максимальная амплитуда сокращения, которая не увеличивается, несмотря на дальнейшее нарастание силы раздражающего тока.

    Тетаническое сокращение . В естественных условиях к мышечным волокнам поступают не одиночные, а ряд нервных импульсов, на которые мышца отвечает длительным, тетаническим сокращением, или тетанусом . К тетаническому сокращению способны только скелетные мышцы. Гладкие мышцы и поперечнополосатая мышца сердца не способны к тетаническому сокращению из-за продолжительного рефрактерного периода.

    Тетанус возникает вследствие суммации одиночных мышечных сокращений. Чтобы возник тетанус, необходимо действие повторных раздражений (или нервных импульсов) на мышцу еще до того, как закончится ее одиночное сокращение.

    Если раздражающие импульсы сближены и каждый из них приходится на тот момент, когда мышца только начала расслабляться, но не успела еще полностью расслабиться, то возникает зубчатый тип сокращения (зубчатый тетанус ).

    Если раздражающие импульсы сближены настолько, что каждый последующий приходится на время, когда мышца еще не успела перейти к расслаблению от предыдущего раздражения, то есть происходит на высоте ее сокращения, то возникает длительное непрерывное сокращение, получившее название гладкого тетануса .

    Гладкий тетанус – нормальное рабочее состояние скелетных мышц обусловливается поступлением из ЦНС нервных импульсов с частотой 40-50 в 1с.

    Зубчатый тетанус возникает при частоте нервных импульсов до 30 в 1с. Если мышца получает 10-20 нервных импульсов в 1с, то она находится в состоянии мышечного тонуса , т.е. умеренной степени напряжения.

    Утомление мышц . При длительном ритмическом раздражении в мышце развивается утомление. Признаками его являются снижение амплитуды сокращений, увеличение их латентных периодов, удлинение фазы расслабления и, наконец, отсутствие сокращений при продолжающемся раздражении.

    Еще одна разновидность длительного сокращения мышц - контрактура . Она продолжается и при снятии раздражителя. Контрактура мышцы наступает при нарушении обмена веществ или изменении свойств сократительных белков мышечной ткани. Причинами контрактуры могут быть отравление некоторыми ядами и лекарственными средствами, нарушение обмена веществ, повышение температуры тела и другие факторы, приводящие к необратимым изменениям белков мышечной ткани.

    Нормальная физиология: конспект лекций Светлана Сергеевна Фирсова

    1. Физические и физиологические свойства скелетных, сердечной и гладких мышц

    По морфологическим признакам выделяют три группы мышц:

    1) поперечно-полосатые мышцы (скелетные мышцы);

    2) гладкие мышцы;

    3) сердечную мышцу (или миокард).

    Функции поперечно-полосатых мышц:

    1) двигательная (динамическая и статическая);

    2) обеспечения дыхания;

    3) мимическая;

    4) рецепторная;

    5) депонирующая;

    6) терморегуляторная.

    Функции гладких мышц:

    1) поддержание давления в полых органах;

    2) регуляция давления в кровеносных сосудах;

    3) опорожнение полых органов и продвижение их содержимого.

    Функция сердечной мышцы – насосная, обеспечение движения крови по сосудам.

    Физиологические свойства скелетных мышц:

    1) возбудимость (ниже, чем в нервном волокне, что объясняется низкой величиной мембранного потенциала);

    2) низкая проводимость, порядка 10–13 м/с;

    3) рефрактерность (занимает по времени больший отрезок, чем у нервного волокна);

    4) лабильность;

    5) сократимость (способность укорачиваться или развивать напряжение).

    Различают два вида сокращения:

    а) изотоническое сокращение (изменяется длина, тонус не меняется);

    б) изометрическое сокращение (изменяется тонус без изменения длины волокна). Различают одиночные и титанические сокращения. Одиночные сокращения возникают при действии одиночного раздражения, а титанические возникают в ответ на серию нервных импульсов;

    6) эластичность (способность развивать напряжение при растягивании).

    Физиологические особенности гладких мышц.

    Гладкие мышцы имеют те же физиологические свойства, что и скелетные мышцы, но имеют и свои особенности:

    1) нестабильный мембранный потенциал, который поддерживает мышцы в состоянии постоянного частичного сокращения – тонуса;

    2) самопроизвольную автоматическую активность;

    3) сокращение в ответ на растяжение;

    4) пластичность (уменьшение растяжения при увеличении растяжения);

    5) высокую чувствительность к химическим веществам.

    Физиологической особенностью сердечной мышцы является ее автоматизм . Возбуждение возникает периодически под влиянием процессов, протекающих в самой мышце. Способностью к автоматизму обладают определенные атипические мышечные участки миокарда, бедные миофибриллами и богатые саркоплазмой.

    автора Светлана Сергеевна Фирсова

    Из книги Нормальная физиология: конспект лекций автора Светлана Сергеевна Фирсова

    Из книги Нормальная физиология: конспект лекций автора Светлана Сергеевна Фирсова

    Из книги Нормальная физиология: конспект лекций автора Светлана Сергеевна Фирсова

    автора

    Из книги Медицинская физика автора Вера Александровна Подколзина

    автора Марина Геннадиевна Дрангой

    Из книги Анализы. Полный справочник автора Михаил Борисович Ингерлейб

    Из книги Нормальная физиология автора Николай Александрович Агаджанян

    Из книги Атлас: анатомия и физиология человека. Полное практическое пособие автора Елена Юрьевна Зигалова

    Из книги Полный справочник анализов и исследований в медицине автора Михаил Борисович Ингерлейб

    Из книги Массаж при заболеваниях позвоночника автора Галина Анатольевна Гальперина

    Из книги Гимнастика будущего автора Анатолий Ситель

    Из книги Справочник ветеринара. Руководство по оказанию неотложной помощи животным автора Александр Талько

    Из книги Скульптурная гимнастика для мышц, суставов и внутренних органов. автора Анатолий Ситель

    Из книги Скандинавская ходьба. Секреты известного тренера автора Анастасия Полетаева

    По структуре гладкая мышца отличается от поперечнополосатой скелетной мышцы и мышцы сердца. Она состоит из клеток веретенообразной формы длиной от 10 до 500 мкм, шириной 5-10 мкм, содержащих одно ядро. Гладкомышечные клетки лежат в виде параллельно ориентированных пучков, расстояние между ними заполнено коллагеновыми и эластическими волокнами, фибробластами, питающими магистралями. Мембраны прилежащих клеток образуют нексусы, которые обеспечивают электрическую связь между клетками и служат для передачи возбуждения с клетки на клетку. Кроме того плазматическая мембрана гладкомышечной клетки имеет особые впячивания - кавеолы, благодаря которым площадь мембраны увеличивается на 70%. Снаружи плазматическая мембрана покрыта базальной мембраной. Комплекс базальной и плазматической мембраны называют сарколеммой. В гладкой мышцы отсутствуют саркомеры. Основу сократительного аппарата составляют миозиновые и актиновые протофибриллы. В ГМК актиновых протофибрилл намного больше, чем в поперечно-полосатом мышечном волокне. Соотношение актин/миозин = 5:1.

    Толстые и тонкие миофиламеты распылены по всей саркоплазме гладкого миоцита и не имеют такой стройной организации, как в поперечно-полосатой скелетной мышце. При этом тонкие филаменты прикрепляются к плотным тельцам. Некоторые из этих телец расположены на внутренней поверхности сарколеммы, но большинство из них находятся в саркоплазмме. Плотные тельца состоят из альфа-актинина – белка обнаруженного в структуре Z-мембраны поперечнополосатых мышечных волокон. Некоторые из плотных телец расположенных на внутренней поверхности мембраны соприкасаются с плотными тельцами прилегающей клетки. Тем самым сила, создаваемая одной клеткой может передаваться следующей. Толстые миофиламенты гладкой мышцы содержат миозин, а тонкие – актин, тропомиозин. При этом в составе тонких миофиламентов не обнаружен тропонин.

    Гладкие мышцы встречаются в стенках кровеносных сосудах, коже и внутренних органах.

    Гладкая мышца играет важную роль в регуляции

      просвета воздухоносных путей,

      тонуса кровеносных сосудов,

      двигательной активности желудочнокишечного тракта,

      матки и др.

    Классификация гладких мышц:

      Мультиунитарные, входят в состав цилиарной мышцы, мышц радужки глаза, мышцы поднимающей волос.

      Унитарные (висцеральная), находятся во всех внутренних органах, протоках пищеварительных желез, кровеносных и лимфатических сосудах, коже.

    Мультиунитарная гладкая мышца.

      состоит из отдельных гладкомышечных клеток, каждая из которых, находится независимо друг от друга;

      имеет большую плотность иннервации;

      как и поперечнополосатые мышечные волокна, снаружи покрыты веществом, напоминающим базальную мембрану, в состав которого входят, изолирующие клетки друг от друга, коллагеновые и гликопротеиновые волокна;

      каждая мышечная клетка может сокращаться отдельно и ее активность регулируется нервными импульсами;

    Унитарная гладкая мышца (висцеральная).

      представляет собой пласт или пучок, а сарколеммы отдельных миоцитов имеют множественные точки соприкосновения. Это позволяет возбуждению распространяться от одной клетки к другой

      мембраны рядом расположенных клеток образуют множественные плотные контакты (gap junctions), через которые ионы имеют возможность свободно передвигаться из одной клетки в другу

      потенциал действия, возникающий на мембране гладкомышечной клетки, и ионные потоки могут распространяться по мышечному волокну, обеспечивая возможность одновременного сокращения большого количества отдельных клеток. Данный тип взаимодействия известен как функциональный синцитий

    Важной особенность гладкомышечных клеток является их способность к самовозбуждению (автоматии) , то есть они способны генерировать потенциал действия без воздействия внешнего раздражителя.

    Постоянный мембранный потенциал покоя в гладких мышцах отсутствует, он постоянно дрейфует и в среднем составляет -50мВ. Дрейф происходит спонтанно, без каких-либо влияний и когда мембранный потенциал покоя достигает критического уровня возникает потенциал действия, который и вызывает сокращение мышцы. Продолжительность потенциала действия достигает нескольких секунд, поэтому и сокращение тоже может длиться несколько секунд. Возникшее возбуждение затем распространяется через нексус на соседние участки вызывая их сокращения.

    Спонтанная (независимая) активность связана с растяжением гладкомышечных клеток и когда они растягиваются возникает потенциал действия. Частота возникновения потенциалов действия зависит от степени растяжения волокна. Например, перистальтические сокращения кишечника усиливаются при растягивании его стенок химусом.

    Унитарные мышцы в основном сокращаются под влиянием нервных импульсов, но иногда возможны и спонтанные сокращения. Одиночный нервный импульс не способен вызывать ответной реакции. Для ее возникновение необходимо суммировать несколько импульсов.

    Для всех гладких мышц при генерации возбуждения характерна активация кальциевых каналов, поэтому в гладких мышцах все процессы идут медленнее по сравнению со скелетной.

    Скорость проведения возбуждения по нервным волокнам к гладким мышцам составляет 3-5 см в секунду.

    Одним из важных раздражителей инициирующих сокращение гладких мышц является их растяжение. Достаточное растяжение гладкой мышцы обычно сопровождается появлением потенциалов действия. Таким образом, появлению потенциалов действия при растяжении гладкой мышцы способствует два фактора:

      медленные волновые колебания мембранного потенциала;

      деполяризация, вызываемая растяжением гладкой мышцы.

    Данное свойство гладкой мышцы позволяет ей автоматически сокращаться при растяжении. Например, во время переполнения тонкого кишечника возникает перистальтическая волна, которая и продвигает содержимое.

    Сокращение гладкой мышцы.

    Гладкие мышцы, как и поперечно-полосатые, содержат миозин, с поперечными мостиками, гидролизующий АТФ, и для того, чтобы вызвать сокращение, взаимодействует с актином. В противоположность поперечно-полосатым мышцам, тонкие филаменты гладких мышц содержат только актин и тропомиозин и не содержат тропонин; регуляция сократительной активности в гладких мышцах происходит благодаря связыванию Са ++ с кальмодулином, активирующим киназу миозина, которая фосфорилирует регуляторную цепь миозина. Это приводит к гидролизу АТФ и запускает цикл образования поперечных мостиков. В гладкой мышце движение актомиозиновых мостиков является более медленным процессом. Распад молекул АТФ и высвобождение энергии, необходимой для обеспечения движения актомиозиновых мостиков происходит не так быстро как в поперечнополосатой мышечной ткани.

    Экономичность энергозатрат в гладкой мышце является чрезвычайно важным в общем потреблении организмом энергии, так как, кровеносные сосуды, тонкий кишечник, мочевой пузырь, желчный пузырь и другие внутренние органы постоянно находятся в тонусе.

    Во время сокращения гладкая мышца способна укорачиваться вплоть до 2/3 ее первоначальной длины (скелетная мышца от 1/4 до 1/3 длины). Это позволяет полым органам выполнять свою функцию изменяя свой просвет в значительных пределах.

    В организме домашних животных гладкие мышцы находятся во внутренних органах, в стенке сосудов и коже. Гладкие мышцы в отличие от поперечно-полосатых не имеют выраженной поперечной исчерченности, сокращаются относительно медленно, отвечают сокращением на растяжение и могут длительное время находиться в сокращенном состоянии без утомления. Они состоят из удлиненных клеток веретеновидной формы. В функциональном отношении существуют различные типы гладких мышц. Одни сокращаются с определенной силой в ответ на возбуждение и не обладают спонтанной автоматической активностью (ресничная, пиломоторная, цилиарная; мышцы мигательной перепонки, мочевого пузыря, кровеносных сосудов); другие способны к спонтанной автоматической ритмической активности, которая изменяется под влиянием двигательных нервов (мышцы желудочно-кишечного тракта, мочеточников и матки).

    Длина гладкомышечных клеток от 30 до 500 мкм, диаметр от 2 до 10 мкм. Каждая клетка имеет плазматическую мембрану неодинаковой толщины у разных органов, толщина и строение мембраны такие же как и у других клеток. На поверхности клеток гладких мышц имеются вдавливания внутрь клетки в виде мелких сферических карманов и боковых отростков. Боковые отростки обеспечивают звеньевую связь гладкомышечных клеток. В участке нексуса (звена) плазматические мембраны соседних клеток сливаются наружными слоями. Гладкомышечные клетки при помощи отростков группируются в длинные пучки, разделенные соединительнотканными перегородками. Диаметр пучков около 100 мкм. Они ветвятся, формируя тяжи переходов от одного пучка к другому, что важно для деятельности мышцы как единой системы.

    Гладкие мышцы иннервируются симпатическими и парасимпатическими нервами. Одно нервное волокно может контактировать с несколькими клетками.

    Сократительный аппарат клеток гладких мышц состоит из протофибрилл, сгруппированные в миофибриллы, которые размещаются в клетке параллельно друг другу. В миофибриллах находятся тонкие нити протофибрилл трех типов: актиновые, миозиновые и промежуточные. Первые два типа распределены неравномерно, поэтому клетки гладких мышц не имеют поперечной исчерченности. Нити миозина короткие, они образуют димеры, от которых отходят поперечные мостики с головками. Длинные актиновые и короткие миозиновые нити участвуют в укорочении гладкомышечной клетки при сокращении. В сокращении принимают участие и промежуточные протофибриллы.

    Возбудимость гладких мышц . Гладкие мышцы менее возбудимы, чем скелетные: порог возбудимости выше, а хроноксия больше. Мембранный потенциал гладких мышц у различных животных составляет от 40 до 70 мВ. Наряду с ионами Nа+,К+ важную роль в создании потенциала покоя играют также ионы Са++ и Сl-.


    Электрическая активность многих клеток гладких мышц внутренних органов проявляется спонтанно, т.е. клетки самовозбуждаются. Следовательно, возбуждение не обусловлено передачей к мышце нервных импульсов, а носит миогенный (как в сердечной мышце) характер. Эту особенность обозначают как “автоматию” гладких мышц.

    Сокращения гладких мышц имеют существенные различия по сравнению со скелетными мышцами:

    1. Скрытый (латентный) период одиночного сокращения гладкой мышцы значительно больше, чем скелетной (например в кишечной мускулатуре кролика он достигает 0,25 - 1 с).

    2. Одиночное сокращение гладкой мышцы значительно продолжительнее, чем скелетной. Так, гладкие мышцы желудка лягушки сокращаются в течение 60 - 80, кролика - 10-20 с.

    3. Особенно медленно происходит расслабление после сокращения.

    4. Благодаря продолжительному одиночному сокращению гладкая мышца может быть приведена в состояние длительного стойкого сокращения, напоминающего тетаническое сокращение скелетных мышц относительно редкими раздражениями; в этом случае интервал между отдельными раздражениями составляет от одной до десятков секунд.

    5. Энергетические расходы при таком стойком сокращении гладкой мышцы очень малы, что отличает это сокращение от тетануса скелетных мышц, поэтому гладкие мышцы потребляют относительно небольшое количество кислорода.

    6. Медленное сокращение гладких мышц сочетается с большой силой. Например, мускулатура желудка птиц способен поднимать массу, равную 1 кг на 1 см2 своего поперечного сечения.

    7. Одно из физиологически важных свойств гладких мышц - реакция на физиологически адекватный раздражитель растяжение. Любое растяжение гладких мышц вызывает их сокращение. Свойство гладких мышц реагировать на растяжение сокращением играет важную роль для осуществления физиологической функции многих гладкомышечных органов (например, кишечника, мочеточников, матки).

    Тонус гладких мышц . Способность гладкой мышцы длительное время находиться в напряжении в покое под влиянием редких импульсов раздражения обозначают тонусом . Длительные тонические сокращения гладких мышц особенно отчетливо выражены в сфинктерах полых органов, стенках кровеносных сосудов.

    Все перечисленные факторы (тетанизирующая частота разрядов пейсмекеров, медленное скольжение филаментов, постепенное расслабление клеток) способствуют длительным стойким сокращениям гладких мышц без утомления и при небольшой затрате энергии.

    Пластичность и эластичность гладких мышц . Пластичность в гладких мышцах хорошо выражено, что имеет большое значение для нормальной деятельности гладких мышц стенок полых органов: желудка, кишечника, мочевого пузыря. Например, благодаря пластичности гладкой мускулатуры стенок мочевого пузыря давление внутри его относительно мало изменяется при разной степени его наполнения. Эластичность в гладких мышцах выражена слабее, чем в скелетных, но гладкие мышцы способны очень сильно растягиваться.

    ФИЗИОЛОГИЯ ГЛАДКИХ МЫШЦ

    Гладкие мышцы построены из мышечных волокон, которые имеют диаметр от 2 до 5 мкм и длину лишь от 20 до 500 мкм, что значительно меньше, чем в скелетных мышцах, волокна которых имеют диаметр больше в 20 раз, а длину - в тысячи раз. Они не имеют поперечной исчерченности. Механизм сокращения гладких мышечных волокон принципиально такой же, как в лоперечнопосмугованих. Он построен на взаимодействии между сократительные белки актина и миозина, хотя существуют некоторые различия - для них не характерно упорядоченное расположение филаментов. Аналогом Z-линий в гладких мышцах является плотные тельца, которые содержатся в миоплазмы и соединены с клеточной мембраной и актиновыми филаментами. Сокращение различных гладких мышц длится от 0,2 с до 30 с. Абсолютная сила их составляет 4-6 кг / см2, в скелетных мышцах - 3-17 кг / см2.

    Типы гладких мышц : гладкие мышцы разделяют на висцеральные, или унитарные, полиэлементных, или мультиунитарни, и гладкие мышцы сосудов, обладающие свойствами обоих предыдущих типов.

    Висцеральные, или унитарные мышцы содержатся в стенках полых органов - пищеварительного канала, матки, мочеточников, желчного и мочевого пузыря. их особенностью является то, что они передают возбуждение от клетки к клетке щелевыми контактами низкого сопротивления, что позволяет мышцам реагировать как функциональный синцитий, то есть как одна клетка, отсюда и термин - унитарные мышцы. Они спонтанно активны, имеют водители ритма (пейсмекера), которые модулируются под влиянием гормонов или нейромедиаторов. Потенциал покоя для этих мышечных волокон не характерен, так как в активном состоянии клетки он низкий, во время ее торможения - высокий, а в состоянии покоя составляет около -55 мВ. Для них характерны так называемые синусоидальные медленные волны деполяризации, на которые накладываются пиковые ПД, продолжительностью от 10 до 50 мс (рис. 2.34).

    Механизм генерации ПД гладких мышц и их сокращение в значительной степени инициируется ионами Са2 Сокращение возникает через 100-200 мс после возбуждения, а максимальное - развивается только через 500 мс после начала пика. Следовательно, сокращение гладких мышц является медленным процессом. Однако висцеральные мышцы обладают высокой степенью электрического сопряжения между клетками, обеспечивает высокую координацию их сокращения.

    Полиэлементных, или мультиунитарни гладкие мышцы состоят из отдельных единиц без соединительных мостиков, и ответ целого мышцы на раздражение состоит из ответа отдельных мышечных волокон. Каждое мышечное волокно иннервируется одним нервным окончанием, как в скелетных мышцах. К ним относятся мышцы радужки глаза, цилиарная мышцу глаза, пилоеректорни мышцы волос кожи. Они не имеют произвольной регуляции, сокращаются благодаря нервным импульсам, которые передаются через нервно-мышечные синапсы вегетативной нервной системы, нейромедиаторы которой могут вызвать как возбуждение, так и торможение.

    Механизмы сокращения и расслабления гладких мышц

    Механизм сопряжения возбуждения и сокращения отличается от подобного процесса, происходящего в скелетных мышцах, так как гладкие мышцы не содержат тропонина.

    Последовательность процессов в гладких мышцах, что приводит к сокращению и расслаблению, имеет такие шаги:

    1. При деполяризации клеточной мембраны открываются потенциалозалежни кальциевые каналы и ионы

    РИС. 2.34.

    Са 2+ входят в клетку с электрохимическим градиентом, концентрация ионов Са 2+ в клетке увеличивается.

    2. Вход ионов Са 2+ через клеточную мембрану может вызвать дополнительный выход ионов Са 2+ с саркоплазматического ретикулума (СПР) через Са 2+ зависимые ворота кальциевых каналов. Гормоны и нейромедиаторы также стимулируют выход ионов Са 2+ с СПР через инозитолтрифосфатид (И-С-Ф) зависимые ворота кальциевых каналов.

    3. внутриклеточной концентрации ионов Са 2+ увеличивается.

    4. Ионы Са 2+ связываются с кальмодулином, регуляторным белком, который имеет 4 связывания Са 2+ и играет важную роль в активации ферментов. Кальций кальмодулиновий комплекс активирует фермент киназу легкой цепи миозина, что приводит к фосфорилирования молекул головки миозина. Миозин гидролизует АТФ, генерируется энергия и начинается цикл образования поперечных актино-миозиновых мостиков, скольжения актина по миозинових цепях. Фосфорилированные миозиновые мостики повторяют свой цикл, пока не дефосфорилюються миозинфосфатазою.

    5. Дефосфорилирование миозина приводит к расслаблению мышечного волокна, или состояния остаточного напряжения благодаря образованным поперечным мостикам, пока не произойдет окончательная диссоциация кальций-кальмодулинового комплекса.

    ВОЗРАСТНЫЕ ИЗМЕНЕНИЯ ВОЗБУЖДАЮЩИХ СТРУКТУР

    В процессе онтогенеза изменяются свойства возбудимых структур в связи с развитием опорно-двигательной системы и ее регуляцией.

    Увеличивается масса мышц - от 23,3% массы тела у новорожденного до 44,2% в возрасте 17-18 лет. Растет мышечная ткань благодаря удлинению и утолщению мышечных волокон, а не увеличению их количества.

    У новорожденного ребенка активность натрий-калиевых насосов, расположенных в мембранах миоцитов, еще мала и поэтому концентрация ионов К + в клетке почти вдвое меньше, чем у взрослого человека, и только в 3 месяца начинает увеличиваться. ПД после рождения уже генерируются, однако имеют меньшую амплитуду и большую продолжительность. Генерация ПД мышечных волокон у новорожденных не блокируется тетродотоксином.

    После рождения в нервных волокнах увеличивается длина и диаметр осевых цилиндров от 1-3 мкм до 7 мкм в 4 года, и завершается их формирования в 5-9 лет. До 9 лет заканчивается миелинизация нервных волокон. Скорость проведения возбуждения после рождения не превышает 50% скорости у взрослых и увеличивается в течение 5 лет. Рост скорости проведения обусловлено: увеличением диаметра нервных волокон, их миелинизацией, образованием ионных каналов и повышением амплитуды ПД. Уменьшение продолжительности ПД и соответственно фазы абсолютной рефрактерности приводит к увеличению количества ПД, которые может генерировать нервное волокно.

    Рецепторный аппарат мышц развивается быстрее, чем формируются двигательные нервные окончания. Продолжительность нервно-мышечной передачи после рождения - 4,5 мс, у взрослого - 0,5 мс. В процессе онтогенеза возрастает синтез ацетилхолина, ацетилхолинэстеразы, плотность холинорецепторов конечной пластинки.

    В процессе старения продолжительность ПД в возбудимых структурах увеличивается, а количество ПД, которые генерируют мышечные волокна в единицу времени (лабильность), уменьшается. Масса мышц уменьшается в связи с понижением интенсивности метаболизма.